

Energy in Building and Communities Programme

DEW POINT INDIRECT EVAPORATIVE COOLER: KPI, SEER AND HYBRID SYSTEM

María Jesús Romero-Lara^{1#}, Francisco Comino^{2*} and Manuel Ruiz de Adana^{3#}

[#]Departamento de Química-Física y Termodinámica Aplicada, Escuela Politécnica Superior, Universidad de Córdoba, Campus de Rabanales, Antigua Carretera Nacional IV, km 396, 14071

^{*}Departamento de Mecánica, Escuela Politécnica Superior, Universidad de Córdoba, Campus de Rabanales, Antigua Carretera Nacional IV, km 396, 14071

¹ p42rolam@uco.es (PhD Student, researcher)
² francisco.comino@uco.es (Assistant Professor Doctor, researcher)
³ manuel.ruiz@uco.es (Professor, researcher)

21st July 2022

Index

- Intro IEC air cooler
- II. Key Performance Indicators, KPI
 - A. KPI for \dot{V}_{SA} 1200 m³ h⁻¹
 - **B.** KPI for \dot{V}_{SA} 2880 m³ h⁻¹
 - C. Analysis of KPI
- III. Seasonal Energy Efficiency Ratio, SEER

(according to climate conditions)

IV. Hybrid air-cooling system (RACU = DIEC + DW)

I. Intro IEC air cooler

IEA EBC - Annex 85 - Indirect Evaporative Cooling (contribution from the University of Cordoba team)

I. Intro IEC air cooler

- DIEC was able to significantly reduce the temperature of the inlet airflow, T_{OA} , to the DIEC. The DIEC outlet airflow temperature, T_{SA} , was lower than the DIEC inlet airflow temperature. Also, in this air-cooling process, <u>no moisture is added to the supply airflow</u>.
- An example of process chart of this DIEC system, through experimental results, is shown. It can be observed the high influence of the outdoor air humidity ratio, ω_{OA} , on the T_{SA} value.

*Nominal value for our DIEC

Process chart:

I. Intro IEC air cooler

The ranges of the

DIEC input parameters

- Several experimental tests were based on the statistical technique of design of experiments, <u>DOE</u>, specifically the Box-Behnken design. This design consisted of 27 experimental tests with 3 specific points as central points.
- The input parameters of the experimental tests were outdoor air temperature, T_{OA} , outdoor air humidity ratio, ω_{OA} , outdoor volumetric air flow, \dot{V}_{OA} , and exhaust air rate, R_{exh} . The R_{exh} value was defined as the ratio between the exhaust airflow, EA, and the outdoor airflow, OA.

- The **DIEC output parameters** were:
- Cooling capacity [kW]

$$\dot{Q}_{cooling} = oldsymbol{
ho}_{air} \cdot \dot{V}_{SA} \cdot (h_{OA} - h_{SA})$$

• Power consumption [kW]

$$\dot{W}=\dot{W}_f+\dot{W}_p$$
 f = fan ; p = pump

• Energy efficiency ratio [-]

$$EER = \frac{\dot{Q}_{cooling}}{\dot{W}}$$

IEA EBC - Annex 85 - Indirect Evaporative Cooling (contribution from the University of Cordoba team)

I. Intro IEC air cooler

• The coefficients of determination, \mathbb{R}^2 , of the $\dot{Q}_{cooling}$, \dot{W} and *EER* empirical models of the DIEC system were 0.9991, 0.9997 and 0.9973, respectively.

The \dot{V}_{OA} and R_{exh} values were set to the nominal values, 5236 m³ h⁻¹ and 0.45, respectively, for this *EER* trend.

The T_{OA} and ω_{OA} values were set to the mean values of their ranges, 34.5 °C and 10.5 g kg⁻¹, respectively, for this *EER* trend.

II. Key Performance Indicators, KPI

- The main performance indicators recommended by the "IEA EBC Annex 85 Indirect **Evaporative Cooling**" group were:
 - Outlet air temperature, T_{SA} Ο
 - Wet bulb efficiency, ε_{wb} Ο
 - Dew point efficiency, ε_{dp} Ο
 - Supplied cooling power, Q_{supply} Ο
 - Coefficient of performance/Energy efficiency ratio, COP/EER 0
 - Cooling capacity per unit of water consumed, KPI_{CW} Ο
 - Number Transfer Unit, NTU* 0
- The UCO team determined the values of each of these indicators as indicated:

$$\epsilon_{wb} = \frac{T_{OA} - T_{SA}}{T_{OA} - T_{SA,wb}}$$
$$\dot{Q}_{supply} = \rho_{air} \cdot cp_{air} \cdot \dot{V}_{SA} \cdot (T_{OA} - T_{SA})$$
$$\epsilon_{dp} = \frac{T_{OA} - T_{SA}}{T_{OA} - T_{SA,dp}}$$
$$EER = \frac{\dot{Q}_{supply}}{\dot{W}_{electricity}}$$
$$KPI_{CW} = \frac{\dot{Q}_{supply}}{\dot{V}_{water}}$$

Indirect evaporative cooler
$C_c^* = m$
$C_h^* = M^*$, where $M^* = MC_p/a$
$C_{\min} = \min(C_c^*, C_h^*)$
$C_{\max} = \max(C_c^*, C_h^*)$
$C_r = C_{\min}/C_{\max}$
$NTU^* = U^*A/C_{min}$
where $U^* = \frac{1}{a\left(\frac{1}{2} + \frac{\delta}{2}\right) + \frac{1}{2}}$
$\varepsilon^* = f(\text{NTU}^*, C_r)$
$q_{\max} = C_{\min}(h_s(T_i) - h_i)$
$arepsilon^* = rac{q}{q_{ m max}}$
$q = \varepsilon^* C_{\min}(h_s(T_i) - h_i)$
$\varepsilon^* = \frac{C_h^*(h_s(T_i) - h_s(T_o))}{C_{\min}(h_s(T_i) - h_i)}$
or $\varepsilon^* = \frac{C_c^*(h_o - h_i)}{C_{\min}(h_s(T_i) - h_i)}$

 T_{SA})

Ala Hasan (2012) doi:10.1016/j.apenergy.2011.07.005

II.A KPI for \dot{V}_{SA} 1200 m³ h⁻¹

Test point	Τ _{ΟΑ}	$\omega_{ m OA} \ (= \omega_{ m SA})$	HR _{OA}	T _{sa}	ε _{wb}	ε _{dp}	\dot{Q}_{supply}	EER	KPI _{cw}
	[°C]	[g/kg]	[%]	[°C]	[%]	[%]	[kW]	[•]	[Wh/l]
N1	35	7.0	20	22.9	0.75	0.46	5.0	32.7	213.3
N2	35	10.5	30	21.9	0.97	0.65	5.3	29.5	213.0
N3	35	14.1	40	30.4	0.42	0.30	1.9	18.7	34.1
N4 ^a	35	<u>21.4</u>	60	-	-	-	-	-	-
N5 ª	35	<u>28.9</u>	80	-	-	-	-	-	-
N6	30	5.3	20	26.1	0.27	0.15	1.6	25.2	299.2
N7	30	7.9	30	21.3	0.73	0.45	3.6	26.3	139.4
N8	30	10.6	40	21.6	0.85	0.56	3.4	23.1	134.0
N9 ^a	30	<u>16.4</u>	60	-	-	-	-	-	-
N10 ª	30	<u>21.5</u>	80	-	-	-	-	-	-
N11 ^a	25	<u>3.9</u>	20	-	-	-	-	-	-
N12	25	5.9	30	24.5	0.43	0.24	0.2	19.1	397.2
N13	25	7.9	40	21.3	0.42	0.25	1.5	19.6	20.4
N14	25	11.9	60	23.6	0.25	0.17	0.6	13.3	5.2
N15 ª	25	<u>15.9</u>	80	-	-	-	-	-	-

• The Number Transfer Unit, NTU, value for our DIEC under \dot{V}_{SA} value equal to 1200 m³ h⁻¹ and T_{OA} range 25-35 °C was:

II.B KPI for \dot{V}_{SA} 2880 m³ h⁻¹

Test point	T _{oa}	$\omega_{OA} \ (=\omega_{SA})$	HR _{OA}	T _{SA}	ε _{wb}	ε _{dp}	\dot{Q}_{supply}	EER	KPI _{cw}
	[°C]	[g/kg]	[%]	[°C]	[%]	[%]	[kW]	[-]	[Wh/l]
N1	35	7.0	20	18.8	0.99	0.62	15.9	8.2	839.4
N2	35	10.5	30	21.4	1.00	0.67	13.3	8.9	453.4
N3	35	14.1	40	33.4	0.14	0.10	1.6	2.0	107.6
N4 ^a	35	<u>21.4</u>	60	-	-	-	-	-	-
N5 ^a	35	<u>28.9</u>	80	-	-	-	-	-	-
N6	30	5.3	20	20.4	0.67	0.38	9.4	3.2	889.9
N7	30	7.9	30	18.1	0.98	0.61	11.6	7.2	591.7
N8	30	10.6	40	21.0	0.89	0.59	8.7	6.9	329.3
N9 ^a	30	<u>16.4</u>	60	-	-	-	-	-	-
N10 ^a	30	<u>21.5</u>	80	-	-	-	-	-	-
N11 ^a	25	<u>3.9</u>	20	-	-	-	-	-	-
N12	25	5.9	30	19.4	0.53	0.30	5.5	2.2	599.5
N13	25	7.9	40	18.2	0.78	0.47	6.7	4.8	423.3
N14	25	11.9	60	24.4	0.11	0.07	0.6	2.9	79.4
N15 ^a	25	<u>15.9</u>	80	-	-	-	-	-	-

^a The humidity ratio values established for tests N4, N5, N9, N10, N11 and N15 are not within the range for which the DOE of our <u>DIEC</u> was performed. Therefore, invalid values are obtained for indicators.

The influence of the outdoor conditions, T_{OA} and ω_{OA} , on the output parameters was the same

II.C Analysis of KPI

for both situations. The main effects plots are shown: 18100 24 16100 22 **[M**] 14100 ^{Alddns} 12100 7₅ [°C] 50 25 830 22 18 730 10100 KPI_{cw} [Wh/I] EER [-] 19 16 630 8100 ω_{OA} [g/kg] Т_{оА} [°С] Т_{оА} [°С] $\omega_{\mathsf{OA}} [\mathsf{g/kg}]$ 16 530 (a) Supply air temperature (b) Cooling capacity

• The Seasonal Energy Efficiency Ratio, SEER, value for DIEC depended on the following parameters:

- This control strategy was based on the <u>European Standard EN 14825:2018</u> for the calculation of SEER in air conditioners, chillers and heat pumps.
- Five different climate zones from <u>Mediterranean area (Cairo, Madrid, Pescara, Napoli and Murcia)</u> were selected to calculate the DIEC SEER value.

III. Seasonal Energy Efficiency Ratio, SEER

- A simplified method of testing and calculating SEER for the DIEC system was proposed. It consisted of carrying out four experimental tests (A, B, C and D) under specific conditions of outdoor air, following a similar approach to that described in the European Standard EN 14825:2018 for other HVAC systems.
- The ω_{OA} value was constant for the four experimental tests, 11.5 g kg⁻¹. This humidity value was the average value calculated for the five climate zones selected.

• The SEER value was calculated using the innovative simplified method and using the traditional detailed method.

• Simplified SEER calculation method \rightarrow based on four experimental tests (A, B, C and D).

 $SEER_{simplified} = \frac{\dot{Q}_{coolingA} \cdot PLF_A \cdot H_A + \dot{Q}_{coolingB} \cdot PLF_B \cdot H_B + \dot{Q}_{coolingC} \cdot PLF_C \cdot H_C + \dot{Q}_{coolingD} \cdot PLF_D \cdot H_D}{\dot{W}_A \cdot PLF_A \cdot H_A + \dot{W}_B \cdot PLF_B \cdot H_B + \dot{W}_C \cdot PLF_C \cdot H_C + \dot{W}_D \cdot PLF_D \cdot H_D}$

The partial load factor considered were 1.00, 0.83, 0.67 and 0.50 for partial load A, B, C and D, respectively. These values represented the work of the DPIEC at each partial load and were significant in the simplified SEER calculation. H_A , H_B , H_C and H_D were the number of hours in range T_{OA} >33 °C, 33-28 °C, 28-23 °C and 23-18 °C, respectively.

• Detailed SEER calculation method \rightarrow based on annual energy simulations (DOE was used to simulate with TRNSYS tool).

$$SEER_{detailed} = \frac{\sum \dot{Q}_{cooling}}{\sum \dot{W}} = \frac{Q_{cooling}}{W}$$

* Reminder: Coefficients of determination, R², of DIEC empirical models R²= 0.9991 (Cooling capacity, Q_{cooling}) R²= 0.9997 (Power consumption, W)

• The SEER values for the innovative simplified method were compared with the SEER values for the traditional detailed method.

Climate	SEER simplified	SEER_{detailed}	Relative error	
20118	[-]	[-]	[%]	
Cairo	4.1	4.0	<u>2.4</u>	
Madrid	4.1	4.3	<u>4.9</u>	
Pescara	4.0	3.9	<u>2.5</u>	
Napoli	4.0	4.1	<u>2.5</u>	
Murcia	3.9	4.3	<u>9.3</u>	

- SEER values for <u>Mediterranean climate area</u> were around 4.0.
- Mean relative error value was 4.3%.

IV. Hybrid air-cooling system (RACU = DIEC + DW)

- An extensive number of experimental tests, 64, were performed to obtain several empirical models of the RACU hybrid air-cooling system.
- The input variables considered for this experimental study were:

Input variable	Low value	High value	Unit
Process inlet air temperature, T_{pOA}	24	40	°C
Process inlet air humidity ratio, ω_{pOA}	8	14	g kg ⁻¹
Process inlet volumetric air flow, \dot{V}_{pOA}	3000	4500	m ³ h ⁻¹
Regeneration inlet air temperature, T_{rOA}	24	40	°C
Regeneration inlet air humidity ratio, ω_{rOA}	8	14	g kg ⁻¹
Regeneration inlet volumetric air flow, $\dot{V}_{\rm rOA}$	1000	2000	m ³ h ⁻¹
Exhaust air ratio, R _{pEA}	0.3	0.7	-

$$\dot{Q}_{supply} = \rho_{\text{air}} \cdot \dot{V}_{SA} \cdot \left(h_{pOA} - h_{SA}\right)$$

$$EER = \frac{\dot{Q}_{supply}}{\dot{W}_{electricity}}$$

IV. Hybrid air-cooling system (RACU = DIEC + DW)

Test point	T _{oa}	ω _{OA}	HR _{OA}	T _{SA,DIEC}	T _{sa,racu}	$\omega_{ m SA,DIEC}$	$\omega_{{ m SA,RACU}}$	EER _{DIEC}	EER _{RACU}
	[°C]	[g/kg]	[%]	[°C]	[°C]	[g/kg]	[g/kg]	[-]	[-]
N1	35	7.0	20	18.8	15.2	7.0	5.2	8.2	6.4
N2	35	10.5	30	21.4	20.1	10.5	8.5	8.9	4.6
N3	35	14.1	40	33.4	23.0	14.1	11.9	2.0	4.8
N4 ^a	35	<u>21.4</u>	60	-	-	<u>21.4</u>	-	-	-
N5 ^a	35	<u>28.9</u>	80	-	-	<u>28.9</u>	-	-	-
N6	30	5.3	20	20.4	13.6	5.3	3.9	3.2	6.6
N7	30	7.9	30	18.1	17.1	7.9	6.2	7.2	4.7
N8	30	10.6	40	21.0	19.4	10.6	8.5	6.9	3.8
N9 ^a	30	<u>16.4</u>	60	-	-	<u>16.4</u>	-	-	-
N10 ^a	30	<u>21.5</u>	80	-	-	<u>21.5</u>	-	-	-
N11 ^a	25	<u>3.9</u>	20	-	-	<u>3.9</u>	-	-	-
N12	25	5.9	30	19.4	16.4	5.9	4.8	2.2	4.5
N13	25	7.9	40	18.2	18.0	7.9	6.3	4.8	3.4
N14	25	11.9	60	24.4	19.5	11.9	9.3	2.9	3.1
N15 ^a	25	<u>15.9</u>	80	-	-	<u>15.9</u>	-	-	-

Coefficients of determination, R², for the RACU empirical models:

•

•

 $T_{SA,RACU}$ → 0.9356 $ω_{SA,RACU}$ → 0.9430 EER_{RACU} → 0.9707

These results were obtained for R_{pEA} and \dot{V}_{pOA} values set to nominal values, 0.45 and 5236 m³ h⁻¹, respectively.

^a The humidity ratio values established for tests N4, N5, N9, N10, N11 and N15 are not within the range for which the DOE of our <u>DIEC</u> and our <u>RACU</u> were performed. Therefore, invalid values are obtained for indicators.

Energy in Building and Communities Programme

THANKS FOR YOUR ATTENTION!

María Jesús Romero-Lara^{1#}, Francisco Comino^{2*} and Manuel Ruiz de Adana^{3#}

[#]Departamento de Química-Física y Termodinámica Aplicada, Escuela Politécnica Superior, Universidad de Córdoba, Campus de Rabanales, Antigua Carretera Nacional IV, km 396, 14071

*Departamento de Mecánica, Escuela Politécnica Superior, Universidad de Córdoba, Campus de Rabanales, Antigua Carretera Nacional IV, km 396, 14071

¹ p42rolam@uco.es (PhD Student, researcher)
 ² francisco.comino@uco.es (Assistant Professor Doctor, researcher)
 ³ manuel.ruiz@uco.es (Professor, researcher)

21st July 2022